If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x+2x^2=36
We move all terms to the left:
12x+2x^2-(36)=0
a = 2; b = 12; c = -36;
Δ = b2-4ac
Δ = 122-4·2·(-36)
Δ = 432
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{432}=\sqrt{144*3}=\sqrt{144}*\sqrt{3}=12\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-12\sqrt{3}}{2*2}=\frac{-12-12\sqrt{3}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+12\sqrt{3}}{2*2}=\frac{-12+12\sqrt{3}}{4} $
| 11w+13w-7+2=-3w+2-7 | | 4z^2+5z+4=0 | | m⁴+10m²+9=0 | | 0.01(x+4)-0.4=0.01(5x+4) | | 4k=256 | | (9x-15)=(2x-3) | | Cp=50p | | 11/2÷31/2=n | | 18j^2+78j–60=0 | | 4(2p-)+5(3-p)=21 | | 0=x²+20x-400 | | 6-2x=4x-3 | | 16t–16t^2=64 | | 16t–16t2=64 | | 7x–5=5–7x | | 40+20d=60+40d | | 4) 40+20d=60+40d | | 1=2/5x | | 192−37x =−19 | | 9m+3=0.15 | | 4(x-13)=-3 | | 5g(-2)=-7 | | -4x+-2=-14x+-72 | | 15–4x=6x+11 | | 3/4x^2-8=10 | | 8(x+2)-3=8x+ | | 3(3m-4)=(2m-6) | | 3(3m-4)=(2m-6X | | 9x-10=7x-2 | | 2x-10=-17 | | X+(x-15)=35 | | 54-2y=4(2y-4y+6y) |